© 2021 B2Q Associates

Do the Right Thing:

The Importance of Commissioning, Controls, & TAB in Lab Buildings

Presented by B2Q Associates, Inc. Chris Schmidt & Brad Newell

A Woman Business Enterprise (WBE)

10/16/2018

Do the Right Thing: The Importance of Commissioning, Controls, & TAB in Lab Buildings – B2Q Associates Inc.

Learning Objectives

- Understand the role a commissioning agent has in the design, construction, operation, verification, and training of staff in new construction or major renovation.
- Understand the role of the Testing, adjusting, & balancing (TAB) contractor in verifying laboratory safety and optimizing operating costs
- The impact of proper commissioning and TAB on laboratory buildings on the long-term safety, performance, operating costs of lab buildings and the wellbeing of its occupants
- Review of industry standards for TAB and Commissioning and recommended Improvements

Familiar Story?

- Build a \$125 \$200 million lab facility
 - \$8-10 million & 2 years on planning & design
 - \$5-7 million on "advanced" HVAC controls
 - \$150,000 & 4 weeks on commissioning (0.1%)
 - Spend \$100,000 & 4 weeks on TAB (0.05%)

Familiar Story?

The Good:

- Very good looking building
- Attractive, modern façade and interior
- Nice furniture and surfaces
- Spacious and functional labs & offices

The Bad:

- Lots of occupant complaints
 - Noise and Comfort issues
 - Annoying controls
- Expensive to operate
 - Excessive energy use & \$
 - Costly & consistent
 maintenance
- Loss of occupants

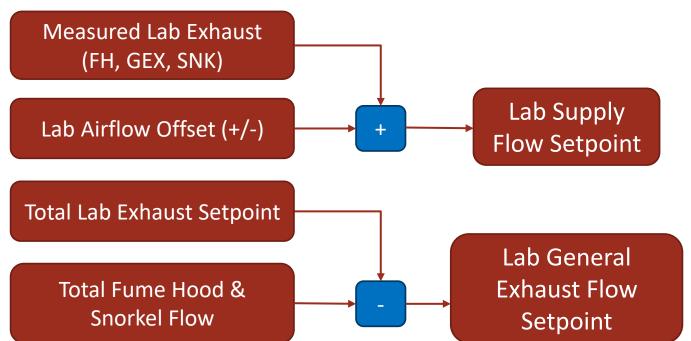
© 2021 B2Q Associates

Why Cx & TAB of Lab <u>Controls</u> Important?

- The goal of laboratory (or fume hood) ventilation controls is to sufficient and effective ventilation and pressurization.
- Provide a safe and comfortable working environment while keeping operating & maintenance costs at reasonable levels
 - •Safety
 - Comfort (temp, RH, noise)
 - Consistency (temp & RH)
 - Reliability / maintainability
 - •O&M costs

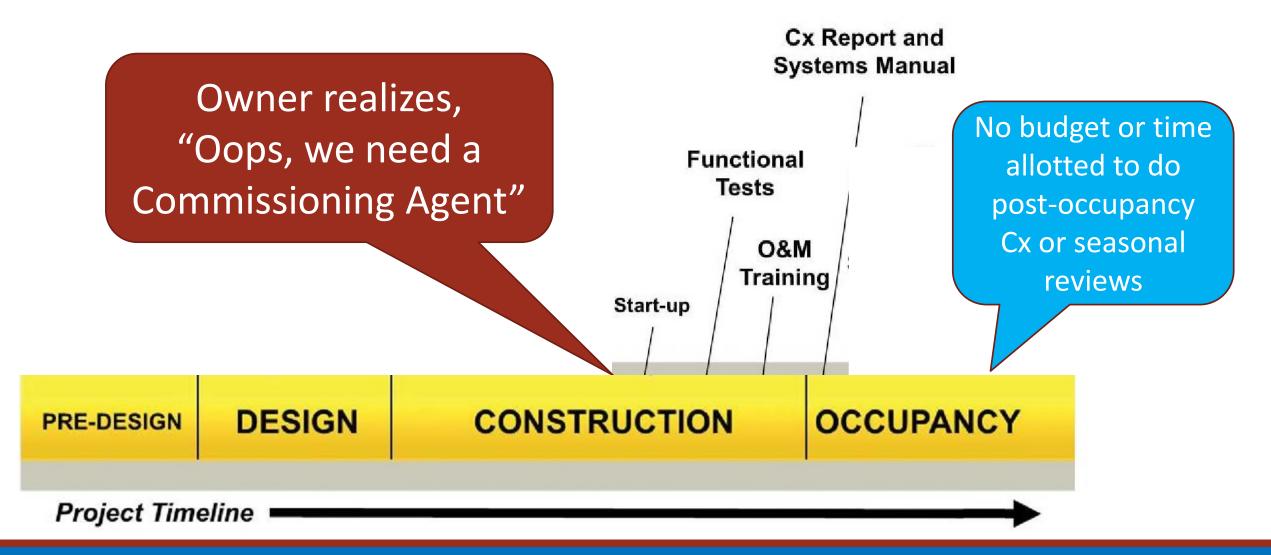
LAB AIR IS EXPENSIVE

Project Name	Savings Metric		
	\$/cfm		
NY College Science Center	\$2.82		
UMass - LSL	\$4.05		
UMass - ISB	\$4.35		
UMass - Elab II	\$10.33		


10/16/2018

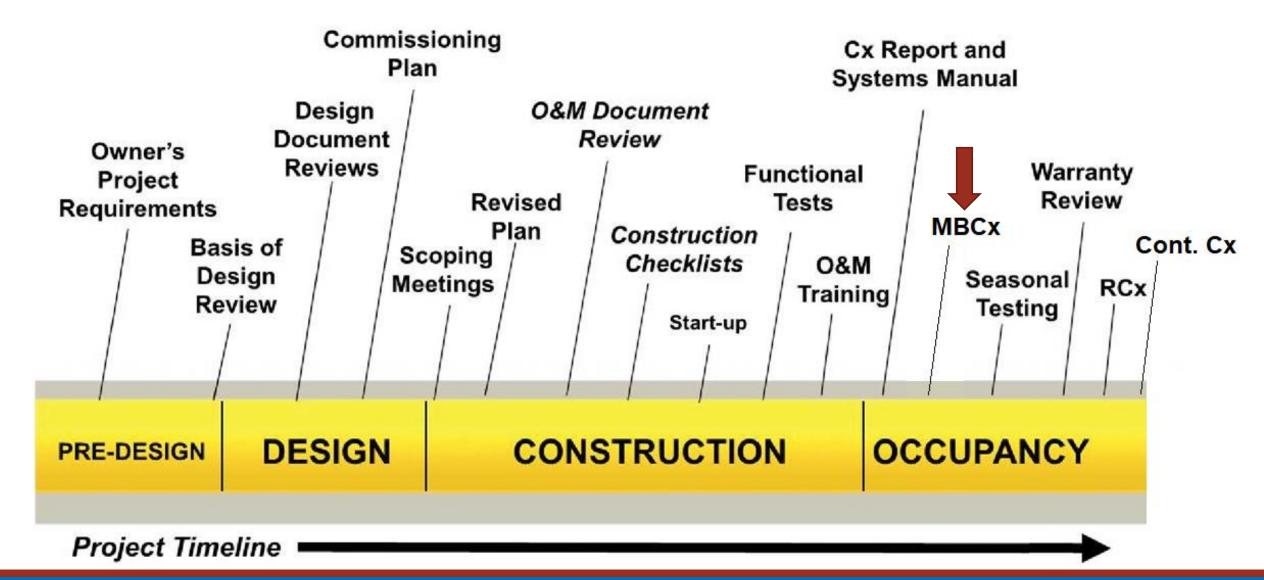
Commissioning Myths

- Many owners (and others) think commissioning takes place only in the last few weeks/months before occupancy.
- Commissioning is just a bunch of checklists that the Cx Agent has to do at startup
- The Cx Agent is the only one involved in commissioning
- Commissioning is only required for LEED or State req's
- Cx is just to make sure all equipment is functional
- Cx shouldn't cost more than a few tenths of % of budget


Importance of Commissioning 2021 B2Q Associates

- Commissioning is a continuous process that, when executed properly, helps ensure that equipment and <u>systems</u> will meet design intent, contract documents, and updated owner requirements.
- Commissioning not only validates functionality of individual components and systems, but the interaction of these

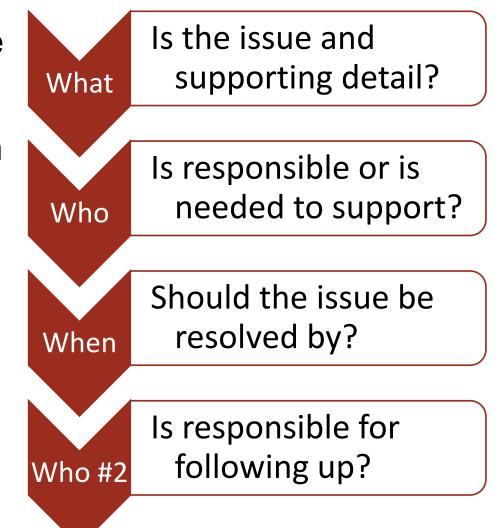
© 2021 B2Q Associates


Typical Cx Process

10/16/2018

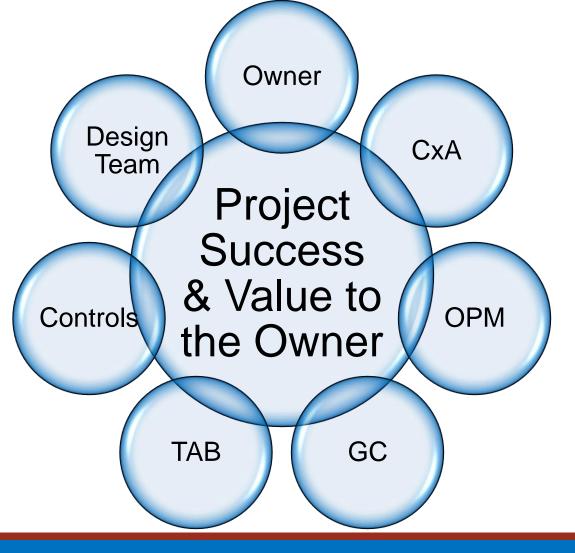
Do the Right Thing: The Importance of Commissioning, Controls, & TAB in Lab Buildings – B2Q Associates Inc.

Comprehensive Cx Process – More than FPTs!


10/16/2018

Keys to Successful Commissioning

- CxA should be involved early & work for the owner directly
- CxA should be involved in development / review of OPR & BoD + controls, HVAC, TAB, & Cx design and specs.
- Solid, comprehensive, & building-specific Cx & TAB specs.
- Cx & TAB should have sufficient time to perform scopes
- <u>CxA should & owner/OPR need to hold D&C team accountable</u> to contract documents
- Comprehensive, multi-faceted O&M training
- Cx process should continue through 1st year of occupancy


© 2021 B2Q Associates Consistent & Actionable Communication

- What good is an issues log if it doesn't give direction and provide useful information?
- The commissioning agent's communication with the owner, contractors, and design team must be consistent and actionable
- It must be understood that the CxA is not on the project to direct the contractors
 - CxA role is to review, witness, verify, record, and communicate observations continuously with the owner.

Collaborative Approach – There's[®] a^{o2}lot of ^{ciates} people at the table

- Commissioning needs to be systematically planned and performed with buy-in from all stakeholders
 - The value to the Owner, in terms of building systems efficiency, functionality, and maintainability can be significant.
- A haphazard or non-collaborative approach will most often be a waste of time and money and result in inferior building performance.

Role of TAB Contractor

The purpose of the NEBB *Procedural Standards for Testing Adjusting and Balancing of Environmental Systems* is to establish a uniform and systematic set of criteria for the performance of the testing, adjusting and balancing of environmental or Heating, Ventilating and Air-conditioning (HVAC) systems.

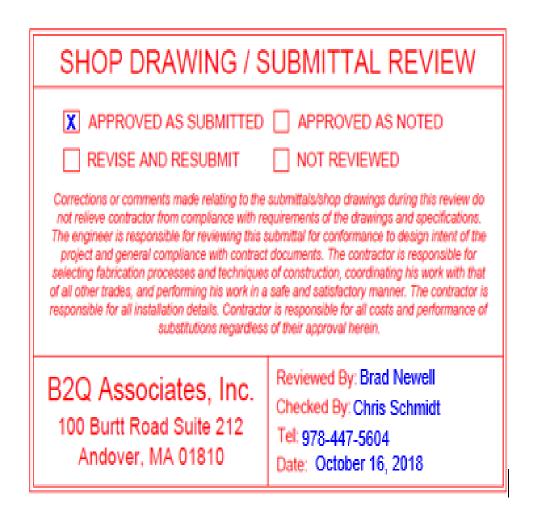
Today's buildings provide highly controlled indoor environments. These conditions could not exist without sophisticated mechanical systems created by a team of skilled professionals. A key member of this team is the NEBB Certified Test, Adjust, and Balance (TAB) Firm.

Keys for Successful TAB

- Comprehensive & building- & controls-specific TAB spec
- Engineer & CxA should indicate how TAB to be performed
- Proper design & installation duct layout, device sizing, proper balancing devices & located properly, accessible.
- Allow early / sufficient time for TAB and proper access
- Have the TAB contractor on site / at meetings earlier
- Engr & CxA should engage TAB <u>they're knowledgeable!</u>

© 2021 B2Q Associates Flow Measurement Accuracy

- Industry standard for VAV flow station setup, calibration, balancing is at design max flow
- BUT....VAVs typically operate in mid- to low-range
- VAV k-factors should be setup across the range of the VAV
 - or somewhere close to typical operating conditions
- If static reset or adjustment, should measure at lower static



Cx Deficiency Example – Sequence Inconsistencies

- 2 new lab buildings (adjoining buildings): 4 & 2 years old
- Separate design teams but same campus-wide controls contractor.
- Each building had drastically different lab ventilation sequences; only one of them was acceptable.
- Construction drawings for the 2-year old building were lacking in their description of ventilation control; only stated ACH setpoints.
 - No total lab exhaust flow setpoint ... difficult to control to occ/unocc ACH
 - Fume hood, snorkel & cabinet airflows not accounted for in room balance
 - Exhaust flow tracked supply flow

© 2021 B2Q Associates Cx Deficiency Example – Sequence Inconsistencies

- How did this happen?
 - Insufficient OPR / BoD or design standard?
 - Missed in design & submittal reviews?
 - Execution was poor
 - Inexperienced programmer & lack of oversight from controls contractor
 - CxA may not have been actively involved during the design phases
 - CxA may have caught and/or time/scope/funding cut short?

TAB Example

				1					
SUPPLY DEVICES						EXHAUST DEVICES			
Lab	Device	Average % Error	GEX or		Lab	Device	Average %	GEX (
			Supp			•	▼ Error ↓1	Sup	
S560AB	S560B-SUPP	-29%	SUPP		N350A	GEX	-19%	GE>	
S560CD	S560D-SUPP	-22%	SUPP		N260C	D North GEX	-14%	GE>	
					N340A	B Alcove Exhau	ust 10%	GEX	
S570	SUPP	10%	SUPP		S461	GEX	10%	GEX	
S340	SUPP	12%	SUPP		S320E	GEX	11%	GEX	
S463	SUPP	14%	SUPP		N340A	B South GEX	12%	GEX	
S330	SUPP	22%	SUPP		S340	GEX	21%	GEX	
S350A	VAV SUPP	47%	SUPP	Sample Statistics	\$330	GEX	24%	GEX	
 650 total devices 		Tota	al Devices Sample	42					
		Total	Above 10% Error	15					
Percer			Percent	Above 10% Error	36%	 Safety issues 			
 At 36% → 234 devices need adj. 				Excess Exhaust	6				
				Excess Supply	5				
				Under Exhaust	2	 Energy waste 			
					2				

2

Under Supply

Economics 101

For a 150,000 ft² lab building \rightarrow Proper Cx & TAB:

Energy Savings

- Baseline energy costs = \$1,250,000 /year
- Assumed savings w/ Cx & TAB = 20%
- Annual Savings: \$250,000
- 10 year savings w/ 2.5% degradation:
 - \$1,700,000

Maintenance Savings

- Baseline maintenance= \$250,000 /year
- Assumed savings w/ Cx & TAB = 20%
- Annual Savings: \$50,000
- 10 year savings: **\$500,000**

Total 10-year Cost Savings:

• \$1,700,000 + \$500,000 = \$2,300,000

Incremental Cost of Cx & TAB

- Base Cx = \$225,000 (\$1.50 /ft²)
- Proposed Cx = \$450,000 (\$3.00 /ft²)
- Base TAB = \$300,000 (\$2.00 /ft2)
- Proposed Cx = \$450,000 (\$3.00 /ft2)

Project Payback

- Initial incremental cost: \$375,000
- Savings after 2 years = \$593,750
- < 2 year payback</p>
- Gross benefit 10 year life w/ RCx at 5 yrs
 - \$2,300,000 \$375,000 \$500,000
 - \$1,425,000 in savings

Final Remarks

- Laboratory airflow control is critical to the health and safety of lab occupants
- Commissioning is a team effort!
- Commissioning starts in pre-design and should involve solid Cx & TAB specs
- Well-performed commissioning and TAB of the building systems are all critical to the ongoing performance, safety, and O&M costs of the building.
- Owner must provide sufficient budget and schedule to allow for comprehensive commissioning, TAB and controls.
- Owner / OPR must hold contractors and designers accountable and ensure punch list and commissioning issues log items are appropriately resolved.

© 2021 B2Q Associates

A Woman Business Enterprise (WBE) www.B2QAssociates.com Chris Schmidt – Vice President cschmidt@b2qassociates.com (603) 247-1575 Saratoga Springs, NY

Brad Newell – Project Manager bnewell@b2qassociates.com (978) 447-5703 Andover, MA